解:根据两个方程可得x^2+(1-bx/a)^2=1
即(b^2/a^2+1)x^2-(2b^2/a)x+b^2-1=0
要使曲线与园有公共点,则关于x的方程必有解
根据韦达定律 即(2b^2/a)^2-4(b^2/a^2+1)(b^2-1)≥0
化简得 b^2/a^2+1-b^2≥0
又b^2>0 所以 1/a^2+1/b^2≥1
取消确定