世界杯B组出线情状阐发
做者: 炸鱼洋
QQ: 1410338247
先阐发阿根廷小组出局的可能性。
假设最初一场
希腊 x+a :a 阿根廷(a为天然数,x为未知整数)
韩国 y+b :b 尼日利亚(b为天然数,y为未知整数)
很明显,若要阿根廷小组出局,必称心
x 0, 即希腊胜阿根廷 ;y0,即韩国胜尼日利亚。如斯,阿根廷积六分,净胜球为4-x ,进球数5+a;希腊积六分,净胜球为x-1,进球数为 x+a+2;韩国积六分,总净胜球为y-1,进球数为 y+b+3;尼日利亚积0分,净胜球 –y-2,进球数b+1.
阿根廷韩国希腊同积六分,比净胜球,则 若使阿根廷小组出局,必有4-x = x-1,即阿根廷净胜球数没有希腊多。那里解得x=2.5 ,取整数,即x=3 .(那里不存在净胜球数不异的情状)。也就是说x=3(希腊胜阿根廷三球及以上)时,希腊出线,下面比力此时阿根廷与韩国的净胜球数。当阿根廷净胜球数没有韩国多,即4-x y-1,x+y5,韩国出线;如有y=5-x,即净胜球不异,则比力进球数5+a与y+b+3,代进x=3,y=5-x,若阿根廷被裁减必有a3-x+b(若阿根廷和韩国进球数也不异,根据规则,阿根廷出线),重视,因为x=3,由此式特殊变形可知小组轮回赛最初一场阿根廷的进球数必然要比尼日利亚进球数少。由此可知
第一, 阿根廷小组赛被裁减称心的前提为 x=3(希腊胜阿根廷三球及以上),而且x+y5(或x+y=5,a3-x+b)。在上述前提称心的情状下,可比力韩国与希腊的净胜球决定小组第一第二。
第二, 在上述前提不称心的情状下,可比力希腊与韩国的净胜球数和进球数决定小组另一个出线名额,即,xy,希腊小组第二出线,阿根廷小组第一;xy,韩国小组出线,阿根廷和韩国比力净胜球等决定小组名次;x=y,比力两边进球数和胜败关系决出另一个出线名额,同时决出小组一二名排位。
上面的假设是x 0(希腊胜阿根廷) ,y0(韩国胜尼日利亚)同时称心的根底上阐发的,下面我们再来看察其他的各类情状。(注:此时阿根廷小组已然出线)
x0,y=0,此时,希腊小组出线,由上述可知,在x=3时,希腊小组第一,x3时,阿根廷小组第一。
x=0,即希腊与阿根廷战平。阿根廷小组第一出线。在此情状下,若y0(即韩国胜尼日利亚),则韩国小组第二出线;若y=0,即韩国平尼日利亚,此时韩国与希腊净胜球都为-1,则比力a与b+1的关系决出另一个出线名额;若y0,即韩国负于尼日利亚,则希腊小组第二出线。
x0时,若y=0(即韩国胜或平尼日利亚),则韩国小组第二出线;若y0,即韩国负于尼日利亚。此时,三队均是积三分,因为韩国净胜球y-1一定小于尼日利亚净胜球–y-2,希腊净胜球x-1一定小于尼日利亚净胜球–y-2,故尼日利亚小组第二出线。
总结上文可知,到目前为行,那个小组场面地步已然很紊乱,各个球队都有出线和被裁减的可能。因为希腊战胜阿根廷的概率很小,因而,最初尼日利亚和韩国一战极其关键,尼日利亚胜则很有可能出线,韩国胜出线概率将接近百分之百。小我觉得,尼日利亚和阿根廷联袂出线的概率较大。 (转载请说明出处做者)